Towards a Visual Perception System for Pipe Inspection: Monocular Visual Odometry
نویسندگان
چکیده
Liquid Natural Gas (LNG) processing facilities contain large complex networks of pipes of varying diameter and orientation intermixed with control valves, processes and sensors. Regular inspection of these pipes for corrosion, caused by impurities in the gas processing chain, is critical for safety. Popular existing non-destructive technologies that used for corrosion inspection in LNG pipes include Magnetic Flux Leakage (MFL), radiography (X-rays), and ultrasound among others. These methods can be used to obtain measurements of pipe wall thickness, and by monitoring for changes in pipe wall thickness over time the rate of corrosion can be estimated. For LNG pipes, unlike large mainstream gas pipelines, the complex infrastructure means that these sensors are currently employed external to the pipe itself making comprehensive, regular coverage of the pipe network difficult to impossible. As a result, a sampling-based approach is taken where parts of the pipe network are sampled regularly, and the corrosion estimate is extrapolated to the remainder of the pipe using predictive corrosion models derived from metallurgical properties. We argue that a robot crawler that can move a suite of sensors inside the pipe network, can provide a mechanism to achieve more comprehensive and effective coverage. In this technical report, we explore a vision-based system for building 2D registered appearance maps of the pipe surface whilst simultaneously localizing the robot in the pipe. Such a system is essential to provide a localization estimate for overlaying other non-destructive sensors, registering changes over time, and the resulting 2D metric appearance maps may also be useful for corrosion detection. For this work, we restrict ourselves to linear pipe formations. We explore two distinct classes of algorithms that can be used to estimate this pose are investigated, both visual odometry systems which estimate motion by observing how the appearance of images change between frames. The first is a class of dense algorithms that use the greyscale intensity values and their derivatives of all pixels in adjacent images. The second class is a sparse algorithm that use the change in position (sparse optical flow) of salient point feature correspondences between adjacent images. Pose estimate results obtained using the dense and sparse algorithms are presented for a number of images sequences captured by different cameras as they moved through two pipes having diameters of 152.40mm (6”) and 406.40mm (16”), and lengths 6 and 4 meters respectively. These results show that accurate pose estimates can be obtained which consistently have errors of less than 1 percent for distance traveled down the pipe. Examples of the stitched images are also presented, which highlight the accuracy of these pose estimates.
منابع مشابه
Visual mapping for natural gas pipe inspection
Validating the integrity of pipes is an important task for safe natural gas production and many other operations (e.g. refineries, sewers, etc.). Indeed, there is a growing industry of actuated, actively driven mobile robots that are used to inspect pipes. Many rely on a remote operator to inspect data from a fisheye camera to perform manual inspection and provide no localization or mapping cap...
متن کاملUnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning
We propose a novel monocular visual odometry (VO) system called UnDeepVO in this paper. UnDeepVO is able to estimate the 6-DoF pose of a monocular camera and the depth of its view by using deep neural networks. There are two salient features of the proposed UnDeepVO: one is the unsupervised deep learning scheme, and the other is the absolute scale recovery. Specifically, we train UnDeepVO by us...
متن کاملEnhanced Monocular Visual Odometry Integrated with Laser Distance Meter for Astronaut Navigation
Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the...
متن کاملSemi-Dense Visual Odometry for Monocular Navigation in Cluttered Environment
Recently, there have been numerous advances in the development of biologically inspired lightweight Micro Aerial Vehicles (MAVs). Due to payload and power constraints it is necessary for such systems to have autonomous navigation and flight capabilites in highly dense and cluttered environments using only passive sensors such as cameras. This is a challenging problem, given they have to operate...
متن کاملDeep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detecti...
متن کامل